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1. INTRODUCTION 

Several different methods of computer- or microprocessor-aided mobile 
phase optimization in high-performance liquid chromatography (HPLC) have 
recently become available. Some can be run off-line using programs designed 
for personal microcomputers and others are integral routines in microprocessor- 
controlled chromatographs. The purpose of this review is to outline some of 
the salient features of these different systems, and to compare them with the 
computer chromatogram simulation method (CCSM) developed and tested in 
our laboratories. The procedures under review are listed in Table 1. While this 
list will certainly not remain comprehensive for long, the methods it contains 
are broadly representative of the various semi-empirical and systematic strate- 
gies that can be adopted with the goal of multi-solvent mobile phase optimiza- 
tion in view. 

2. STRATEGIES FOR OPTIMIZATION 

Most strategies for the optimization of HPLC conditions are based on the 
well verified relationship [ 11 

R, = a- (a-1).(dN)--& (1) 

where R, = resolution factor, N = plate number, k’ = solute capacity factor and 
cy = selectivity factor (&/rZ’,), 

At the present time approximately 100 000 theoretical plates per m represent 
the maximum efficiency attainable with conventional packed columns, and, 
as is well known, because resolution is a function of JN, any increase in plate 
number results in a proportionately smaller increase in effective resolution. 
Increases in resolution obtained by increasing solute capacity factors obviously 
compromise sensitivity of detection Consequently, most efforts at enhanced 
resolution have been directed at changing the selectivity factor (a), either by 
altering the stationary phase or the mobile phase, or both. There are, however, 
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some difficulties in ensuring reproducibility of separations when different 
stationary phases are used for selectivity, particularly when reversed-phase (RP) 
packings are employed, and complex separations are attempted which may 
depend on some degree of mixed-mode chromatography for success. Selectivity 
through mobile phase modification is therefore preferable in principle, and in 
practice. Mobile phase modification includes, of course, the commonly adopted 
methods of gradient (i.e., non-isoeluotropic) elution. This is usually employed 
simply to reduce the time of analysis and increase sensitivity, but can also be 
used to generate retention data with which to predict retention times in corre- 
sponding isocratic systems (and vice versa), aspects of the theory and practice 
of which have been extensively discussed by Snyder and co-workers [Z, 31. 

The ideal system of chromatographic optimization should enable the 
chromatographer to achieve the maximum attainable separation of all compo- 
nents of complex multi-component mixtures of solutes within the minimum 
time of analysis possible. The advent of the microcomputer has recently 
placed within the reach of all chromatographers a variety of possible computa- 
tional methods for achieving this goal. Under ideal circumstances, the best 
method would involve the direct (a priori) prediction of chromatographic 
behaviour from the individual chemistry of each solute in relation to the 
mobile phase composition. While it is, for example, possible to predict the 
retentions of, for example, small peptides and polypeptides in reversed-phase 
chromatography from their amino acid composition [4, 51, the general utility 
of this approach is severely limited [ 4,6]. 

In more typical cases of smaller molecules the complexity of the interactions 
between such solutes and the mobile and stationary phases is such [7] that 
deterministic models of their chromatographic behaviour and solvent theory 
have been of limited value for optimizing complex multi-component separa- 
tions, particularly with respect to the reversed-phase mode which has essentially 
come to dominate HPLC on account of its reproducibility and versatility. 
A deterministic procedure that has been adapted for microcomputer-aided 
mobile phase optimization in isocratic RP-HPLC has, nevertheless, been recently 
developed by Jinno and Kawasaki [ 81 . Their method (Retention Prediction 
System) is based on the type of quantitative structure-retention relationships 
(QSRR) that derive from principles elaborated in gas-liquid chromatography 
(GLC). It is, therefore, based on the assumption that the free energy of reten- 
tion of a molecule can be derived from a linear combination of retention 
energies of its constituent functionalities. It is also assumed that there will be 
no changes in the stationary phase (due for example to column conditioning) 
that will modify QSRR. In Jinno and Kawasaki’s [9] latest approach the cor- 
relations between log k’ and physicochemical parameters such as r (hydro- 
phobic parameter), P (partition coefficient), F (correlation factor), x (molecu- 
lar connectivity index), L/B (shape parameter) and VW (Van der F’aals volume) 
have been reduced to log P and F, enabling the calculations of these correla- 
tions by linear multi-regression analyses to be carried out on a 16-bit micro- 
computer. The database for such predictive procedures obviously requires a 
large number of experiments and compounds, and empirical correction factors 
have had to be included even with the closely related substituted polycyclic 
aromatic hydrocarbons studied by Jinno and Kawasaki [9] in order to obtain 
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a reasonably useful correlation between predicted and observed retentions as a 
function of mobile phase compositions. The application of this procedure to 
other less ideal solutes may, however, be less satisfactory. 

In the majority of instances, trial and error methods of reversed-phase 
optimization have predominated with in general the selection of the best binary 
mobile phase on the basis of individual organic modifier selectivities [ 10,111. 
However, as separations of increasing complexity have been required, multi- 
solvent mobile phases have been used with increasing frequency because of 
the different specific selectivities that can be obtained with individual organic 
modifiers [12]. Intuitive or non-systematic optimization of three-component 
mobile phases is both time-consuming and ineffective, for four components 
it is virtually impossible, and methods of sequential approximation and/or 
stochastic prediction employing computer-aided factor design or mixture 
design strategies become necessary. The former are often applied to discrete 
variables (e.g. pH, temperature) and the latter to related variables such as 
solvent concentrations. Table 1 includes examples of both of these optimization 
strategies. 

TABLE 1 

METHODS OF MICROCOMPUTER- OR MICROPROCESSOR-AIDED MOBILE PHASE 
OPTIMIZATION IN HPLC 

Method System Type Reference 

Authors No. 

COF 
Window diagram 
ORM (SENTINEL) 
ISOOPT 
TERNOPT 
GRADOPT 
Search and stop 
OPTIM (I) 
OPTIM (G) 
OPEX 
IMGE 
SMGE 
PEAKIN/SAS 
RPS 
CCSM-I 

Off-line 
Off-line 
Integral 
Integral 
Integral 
Integral 
Off-line 
Integral 
Integral 
Off-line 
Off-line 
Off-line 
Off-line 
Off-line 
Off-line 

Isocratic 

Isocratic 
Isocratic 
Isocratic 
Isocratic 
Gradient 
Isocratic 
Isocratic 
Gradient 
Gradient 
Gradient 
Gradient 
Isocratic 
Isocratic 
Isocratic 

Glajch et al. (1980) 20 
Sachok et al. (1980) 32 
Glajch et al. (1982) 35 
Berridge (1982) 25 
Berridge (1982) 25 
Berridge (1982) 25 
Drouen et al. (1982) 19 
Bradley and Gillen (1983) 27 
Bradley and Gillen (1984) 28 
Sabate et al. (1983) 26 
Kirkland and Glajch (1983) 21 
Kirkland and Glajch (1983) 21 
Issaq (1984) 36 
Jinno and Kawasaki (1984) 839 
D’Agostino et al. (1984) 39 

3. CRITERIA FOR OPTIMIZATION AND PARAMETERS FOR EVALUATION OF 
CHROMATOGRAMS 

In order to use some form of automated method for optimization it is neces- 
sary to derive an objective parameter to define the ‘goodness’ of chromato- 
grams. There is, as yet however, no universally accepted measure. A variety of 
different quantitative measures of the quality of peak separation have been 
proposed. Those commonly used are usually defined either in terms of separa- 
tion/resolution of either all peaks collectively, or alternatively the least well 
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resolved pair, together with, in some instances, a term which relates to the total 
time of analysis required to effect a given separation. The resultant parameter 
or function constitutes the response with which the quality of an experiment is 
evaluated when using, for example, a simplex method [13 J as a multi-dimen- 
sional search procedure for localising the optimum conditions. From a 
stochastic point of view the use of only the least well resolved pair as the 
response has certain limitations for multi-component separation in HPLC. 
A criterion which operates on all solutes, either by summating individual peak 
pair resolution values, or by calculating their product, is, in our opinion, prefer- 
able. 

3.1. Chroma tographic response function 

The chromatographic response function (CRF) is a criterion which has been 
used in severai forms but which can be essentially defined as peak separation 
parameter (Fig. 1). It was originally suggested by Kaiser [14] and developed as 
a summated function for multi-component separations in GLC by Morgan and 
Deming [ 151, who introduced the use of a logarithmic as distinct from 
geometric peak separation factor to enhance the sensitivity of the CRF value to 
poorly separated peaks. It was applied to HPLC by Watson and Carr [16], who 
included a term to measure excess analysis time, as in the form given in eqn. 2. 

CRF = x ln(Pi/Pd) + CI(T~-~) (2) 
where Pi is the experimental peak separation, Pd is the desired peak separation 
(common to all pairs of peaks), T! is the actual analysis time, T, is the accept- 
able analysis time and 01 is an arbitrary weighting factor adjusted to achieve an 
operationally satisfactory balance between resolution and analysis time (typical 
values are 0.1-0.01). 

In calculating the CRF, only pairs of peaks that do not give effectively base- 
line resolution (P<l) will contribute to the overall value, and under ideal con- 
ditions, e.g. Pi>Pd for all peaks and Tl<T,, CRF is zero (see Fig. 1). However, 
this criterion may not provide a particularly robust separation, particularly 
when there are large differences in adjacent peak height. For this reason op- 
timization criteria based on a peak resolution parameter in which separations 
greater than baseline may be optimized are generally to be preferred on 

_____-____- 
H 

Te=experimental time 

Ro=desired 

Tm= maximum desired time 

Fig. 1. Peak separation and peak resolution based parameters. CRF and COF are shown as 
examples. 
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account of their greater flexibility in an interactive context, Furthermore, 
although Wegscheider et al. [17] have introduced a ‘noise’ term into CRF 
calculations (which they calculate as a product rather than a sum), peak separa- 
tions according to the CRF criterion may, in practice, be difficult to measure 
accurately because of baseline drift, baseline noise or large differences in peak 
heights. Most CRF-type calculations have involved the assumption that separa- 
tions of all components are equally desirable, although this is often at variance 
with real chromatographic requirements. 

3.2. Relative resolution product 

The relative resolution product (RRP) defined by Schoenmakers et al. [18] 
and Drouen et al. [19] measures greater than baseline separations, and in its 
original form makes the assumption that all solutes are of equal importance, 
although weighting factors could be included. The latest form taken by this 
criterion is given in eqn. 3. 

n-l 
r= 7r Rsi+l,i/[ ( g Rsi+,,i) /(n-1)“.‘] (3) 

i=l 

where Rsi+l i is the resolution factor for adjacent peaks i and i+l, defined as 

& = (J’i+l” Vi)l(wi+Wi+l ) where V is the elution volume and w the 2~ peak 
width. 

The RRP (r) reaches a maximum of 1 (the optimum) when all R, values 
(resolution factors) are equal, with the result that it describes a situation when 
all peaks are evenly distributed throughout the chromatogram. It is, however, 
reduced to a minimum (0) when any two peaks are co-eluted. This, together 
with the lack of a peak priority term whereby the separation of peaks of 
particular analytical importance can be protected, constitutes a serious limita- 
tion of this criterion. Furthermore, because it considers only the relative and 
not the absolute positions of peaks it does not, in its original form, distinguish 
between alternative solutions with the same r values but different analysis 
times. A modification of eqn. 3 was consequently proposed by Drouen et al. 
[19] to take into account the observed different overall analysis times en- 
countered when using nominally isoeluotropic ternary mobile phases. This con- 
sists of incorporating a factor in the denominator of the equation representing 
an imaginary peak (i = 0) eluting at the desired starting point of the chromato- 
gram (to) such that, if the first actual peak elutes later than this point (for 
example k’ = l), the value of r is reduced, In this form the RRP aims at an even 
distribution of peaks early in the chromatogram. 

3.3. Chromatographic optimization function 

The chromatographic optimization function (COF) [ 201, on the other hand, 
has interactive features which commend it for stochastic (i.e. statistical) predic- 
tive approaches to chromatographic optimization. Like the RRP it is a peak 
resolution rather than a peak separation parameter (Fig. l), but includes in its 
original form weighting factors for both time of analysis (like CRF) and peak 
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resolution priority (eqn. 4): 

(4) 

where Rsi = peak resolution, RS,d = desired peak resolution, T, = maximum 
analysis time acceptable, Tl = actual analysis time and Ai and B are arbitrary 
weighting factors. 

Under optimized conditions the COF approaches zero from a negative direc- 
tion and only when peak priority weightings are all set to unity does it reduce 
to a form akin to CRF (eqn, 2). As discussed below, however, the full form of 
the COF has not been utilised in all applications for automated optimization. 

3.4. Chromatographic optimization coefficient 

In our own approach to computer-aided optimization by off-line methods 
we have used an extended version of the full COF formula which we have 
termed the chromatographic optimizaticn coefficient (COC) (eqn. 5). As 
described below it is used as a coefficient to calculate quality of chromato- 
grams, real and predicted, and not as a function whose variation is directly cor- 
related with mobile phase composition as in the original method of Glajch et al. 
[20]. The COC is, like COF, a peak resolution parameter and includes 
weighting factors for peak priorities as well as a term reflecting the total 
analysis time. 

where n = number of compounds, _A; and Aj are weighting factors for each 
compound, Rsi j = resolution between peaks i and j, Rsi jd = desired resolution 
between i and j, T, = desired total analysis time, Ti = retention time of peak i, 
and B is a weighting factor for analysis time (typically 0.1). If Ti<Tm then 
T,-Ti = 0; if Rsi j>R,i jd then RslJi = Rsi,idc 

Like COF, the’COC is the sum and not the product of individual peak pair 
resolutions and is not unduly influenced by a single instance of eclipsed peaks, 
although as a logarithmic resolution function it remains sensitive to incom- 
pletely resolved solutes, 

By insertion of appropriate parameters (Ai, Rsi jd, T,, B) optimum condi- 
tions can be selected in terms of peak resolution; total analysis time or any 
combination of these parameters: When the COC is implemented as part of the 
automated computer chromatogram simulation method (CCSM), the chromato- 
grapher has interactive control over peak priority weightings and desired total 
analysis time, and must enter the desired resolution in the form of the experi- 
mentally determined peak width for each component of the mixture (i.e. as a 
function of the efficiency of the system with respect to each solute), or a 
greater value as he deems appropriate, depending on the robustness of the 
predicted separation. 
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4. METHODS OF OPTIMIZATION 

4.1. Isosluotropic versus non-isoeluotrop~ qptimization 

Optimization procedures can be operationally divided into those for isocratic 
separations and those for gradient elution conditions. Table 1 includes 
examples of both, as indicated. However, they are more logically divided into 
those which involve an empirical preselection of overall solvent strength and 
which then search for a local optimum involving an isoeluotropic multi-compo- 
nent mobile phase and those which_ systemat,ically optimize a multi-component 
mobile phase without prior selection of solvent strength, Among the latter non- 
isoeluotropic (or multi-eluotropic) methods are those which allow systematic 
optimization of multi-solvent gradient elution (e.g. SMGE [21] and CCSM- 
Gradient, see below), as well as a fully systematic optimization of solvent 
strength for isocratic separations with mixtures of two (PEAKIN/SAS) or three 
(CCSM-I) organic modifiers in water 

4.2. Sequential approximation w?th factorial design versus statistical prediction 
with mixture design 

In addition to discriminating between lsoeluotropic and non-isoeluotropic 
optimization systems, two main design approaches can be distinguished among 
the procedures listed in Table 1 The first involves a method of successive 
approximation requiring an initially undefined number of experimental chro- 
matograms before an optimum is found, and the second is a stochastic predic- 
tive approach based solely on data from a limited pre-defined number of 
chromatograms. The nature of the equations used to define the relationship 
between solute behaviour and chromatographic conditions is also significantly 
different in various methods with lmcar, quadratic and higher-order polynomial 
regressions used in different cases, with implications with regard to precision 
with which optima are defined, and the speed with which they are found. 

4.3, Sequential approximation methods 

4.3.1. Simplex optimization 
Some optimization procedures have chosen sequential simplex methods for 

attaining the best response. A simplex is a geometric figure defined by the 
number of vertices equal to the number of dimensions of the factor space plus 
one [13]. Sequential simplex optimization is a geometric search pattern tech- 
nique which evaluates the response of a system from a set of points forming a 
simplex in the factor space and tracks the optimum by continually forming 
new simplices by reflecting one pomt in the hyperplane of the remaining 
points, according to the rules proposed by Spendley et al. [22]. The latter have 
their origin in a consideration of how the evolutionary operation of the steep 
ascent optimization procedure of Box could be automated. The response is 
defined as a surface in (n + 1)dimensional space, where n is the number of 
independently variable experimental factors (flow-rate, temperature, pH, 
solvent concentration, etc.), Thus, m a typical case of ternary solvent optimiza- 
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tion with pre-determined solvent strength there are two such variables and the 
response surface lies in three-dimensional space, with the simplex requiring 
three initial experimental points and mapping as a triangle in two-dimensional 
factor space (Fig, 2). With the aid of fun&on. minimization techniques [23], 
the simplex can be made to rodract towards the optimum (provided this is 
unique). In a quaternary solvent system for RF-HPLC in which solvent strength 
(i.e. water concentration) is an Independent variable the appropriate simplex is 

A 

Fig. 2. Seven-point simplex lattice for mixture design optimization of a ternary mobile phase 
(after Glajch et al. [20! ), where 4 R and C are t;bree solvents in normal phase or three 
binary organic modifier water rnlxtul es 8-1i Pqutvalent solvent strengths in RP-HPLC. 

Fig. 3. Fifteen-point simplex lattice for mlsture design optimization of a quaternary mobile 
phase in normal-phase HPLC show!ng the properties of the four different solvents in each 

experiment. 
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a tetrahedron (Fig. 3), with the response surface mapping in a four-dimensional 
hyperspace (n + 1 = 4). Function minimization techniques or sequential sim- 
plex optimization runs of different sizes are essential for localizing true optima 
in this situation. The problems associated with applying simplex algorithms for 
numerical optimization to experimental optimization have been extensively 
considered by Deming and Parker [ 131 

In their original experiments Morgan and Deming [15] used a 3’ factorial 
design to optimize carrier gas flow-rate and temperature in GLC. As with most 
practical applications of simplex designs, it was necessary to place certain limits 
on these variables. This was achieved by assigning an undesirable arbitrary 
response value (CRF = --IO0 j to any vertex of the simplex that violated this 
boundary. Anything up to 25-30 vertices (i.e. chromatograms) were generated 
in the search for the optimum, and the likely existence of multiple optima in 
the factor space domain, due to changes in peak retention order [ 241, means 
that these techniques cannot guarantee that the global optimum has been 
achieved. Nevertheless, sequential optimization is the basis of several methods 
for mobile phase optimization in HPLC, both in the form described here and 
in other semi-predictive techniques designed to limit the number of experi- 
ments required for full sequential optimization. 

4.3.2. ISOOPT, TERNOPT and GRADOPT 
These three closely related methods, devised by Berridge [25] for fully 

automated optimization are all based on a sequential 32 factorial simplex 
design. Response is measured by a CRF parameter, (eqn, 2), with the addition 
of a further term (Lx) in respect of peak number and dictated by the un- 
attended on-line operation of these programs, controlling the chromatograph. 
The large step size simplex method of Yarbro and Deming (see ref. 13) is used 
with Nelder and Mead’s 1231 algorithm for function minimization. In ISOOPT 
flow-rate and binary composition are optimized, in GRADOPT soivent strength 
and gradient duration, while in TERNOPT a three-component isocratic mobile 
phase (two variables) is defined. ‘The only computational difference is that in 
ISOOPT and TERNOPT boundary violations result in a rejection of corre- 
sponding experimental coordinates by assignment of CRF=-100, while in 
GRADOPT the simplex contracts to the relevant boundary to facilitate a more 
rapid convergence on the optimum Despite this, however, up to fifteen sequen- 
tial chromatograms are required for GRADOPT and up to thirty in ISOOPT 
and TERNOPT, even when optimizing conditions for a small number of solutes 
(e.g. four). None of the solute mixtures illustrated [25] involved crossovers, 
which as explained above can result in multiple local minima in factor space 
which these sequential simplex techniques are poorly equipped to handle. 

OPEX [26] is another comparable multi-factorial sequential simplex 
method, based on resolution of only the least well resolved pair of solutes. 
These techniques are clearly of limited value for global optimization and are 
time-consuming even for simple problems in HPLC. This has lead to the 
development of techniques in which sequent,ial approximation and stochastic 
prediction are combined to accelerate the process, 
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4.4. Sequential approximation with stochastic prediction 

4.4.1. OPTIM 
A simple example of this combined approach is the ‘adaptive intelligence’ 

ROM chip that constitutes the OPTIM system of Spectra-Physics. It is based on 
what is essentially a 22 simplex progress for binary optimization combined with 
a statistical predictive method for defining a ternary (three-component) 
optimum. Its criterion for optimization (XA) has not been precisely defined 
but is probably of the CRF type, being a function of separation times and the 
resolution of the worst resolved pair plus peak number term [27]. Having 
established a binary (A+B) optimum to within l-2% in a step-wise manner it 
calculates the appropriate isoeluotropic A+C mixture, runs it and the 50 : 50 
(A+B+ C) mixture and by an unspecified computation predicts a ternary 
optimum. The binary mode is, however, time-consuming and total optimization 
times of lo-18 h for a twelve-component mixture are reported [27]. Its appli- 
cation to gradient elution has been recently described [28] and consists of sub- 
stituting gradient slope for binary composition in the first stage of optimiza- 
tion, the starting point of the binary mobile phase being determined by the 
criterion that less than four peaks elute within a time equivalent to a k’ of 4. It 
is capable of optimizing only a one-step linear gradient profile. 

4.4.2. Window diagrams 
Several of the semi-predictive techniques designed to overcome some of 

these problems are based on a window diagram approach. This originated in the 
studies of Laub and co-workers 129,301 on liquid phase component optimiza- 
tion in GLC, a problem which has obvious similarities with mobile phase 
optimization in HPLC, but deals with a simpler relationship between volatility 
and the effects of liquid phase composition on retentions than is the case for 
mobile phase composition and solute retention in the latter situation. Never- 
theless, the window diagram is a more effective means of localising a global 
optimum if (and this is the key) an appropriate mathematical function can be 
found which accurately defines the relationship between retentions and the 
variable under consideration, In the experiments of Laub and co-workers 
[29,30] there was a single variable and a linear relationship was assumed. The 
window diagram is created from a graphical representation of all individual 
analyte pair relative retentions as a function of the variable, with intermediate 
values derived by linear interpolation from two experimental data sets for the 
limiting conditions. The intersections of the relative retention curves delimit 
a series of windows of accessibility The highest point of the tallest window 
corresponds to the chromat,ographic conditions which should give the best 
possible separation of the two worst resolved pairs of analytes, with all other 
pairs separated better. This approach was transferred to HPLC with the substi- 
tution of the separation factor (S = 2R,/N;) for the relative volatility by Jones 
and Wellington [31], who also used it for mono-factorial optimization (pH). 
The window diagram method was also extended to non-simultaneous multi- 
factorial analysis in RP-HPLC by Sachok et al. [32], when the windows 
become multi-dimensional in nature. Its limitations in this context include not 
only the greatly increased numbers of experimental chromatograms required, 
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but also a requirement for a more accurate correlation of chromatographic 
variables with predicted retentions for intermediate values than is possible 
with linear regression. 

4.4.3. Search and stop 
The method of Schoenmakers et al [lS] and Drouen et al. [19] for iso- 

eluotropic mobile phase optimizat,ion is a mono-factorial sequential procedure 
but with certain modifications to the form of the regressions, The overall 
solvent strength in search and stop is chosen on the basis of a preliminary 
gradient elution chromatogram which establishes the range of polarities in the 
sample (equivalent to the SCOVT step in t,he SENTINEL procedure). Opera- 
tionally search and stop starts with retention data from two pre-determined 
isocratic experiments (usually two different binary mobile phases chosen from 
three preliminary experiments) and linear regressions between solvent composi- 
tion and In h’ values are calculated in the first instance, From these a so-called 
phase selection diagram (equivalent to a window diagram) is created using the 
relative resolution product (eqn 3) as a function of solvent composition. The 
method continues with the generation of an experimental chromatogram under 
mobile phase conditions predicted as optimum (i,e. highest value of r) by this 
criterion. If the observed retentions differ significantly from the predicted 
values they are used to const,ru(:i a corrected phase selection diagram from 
which a new, and hopefully improved, optimum is predicted. The iteration 
stops when the next optimum offers no further improvements. In an example 
of a five-component mixture a total of five to six chromatograms was required 
before this stage was achieved. 

A significant disadvantage of search and stop is the fact that the RRP does 
not necessarily result in the most effect,ive separation being chosen as optimal, 
as the results of Drouen et al 1191 themselves illustrate. Another major 
problem with this method is that if the variation of In k’ with solvent composi- 
tion deviates significantly from linearity then the convergence to the optimum 
may be slow requiring many additlvnal chromatograms. To compensate for this 
effect, in its latest form [19] search and stop runs these sequential chromato- 
grams at a composition shifted from the linearly predicted optimum to a value 
which partially approximates a quadratic expression for In k’ versus mobile 
phase. 

4.5. Stochastic prediction without Sequen,tlal approximation 

Mixture design experiments based on simplex designs can also be used for 
statistical predictive methods of mobile phase optimization that do not involve 
sequential approximation, The essential steps in this approach have been 
defined by Snee [33] as (1) generation of data using a pre-planned experi- 
mental design, (2) finding a mathematical model to fit this data using statistical 
curve-fitting techniques and (31 examming the response-surface contours to 
determine the best value. The advantages inherent in this approach are that 
they require a limited pre-defined number of experimental chromatograms and 
can be used for assembling a model of the chromatographic system in question 
that can, in principle, permit the behaviour of all solutes to be accurately pre- 
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dieted within the mobile phase envelope defined by the simplex, without re- 
course to further experiments, thus enabling the global optimum to be located. 
Their main disadvantage is that a relatively extensive series of polynomial 
regressions must be examined before coefficients that accurately describe the 
retentions as a function of solvent composition can be obtained. 

4.5.1. Chromatographic optimization function (COF) method 

The first attempt at this solely predictive approach was that of Glajch et al. 
[20]. The experimental design selected for isoeluotropic optimization was a 
ten-point design described by Snee [33], subsequently modified to a seven- 
point design as illustrated in Fig. 2, the other three points being relegated to a 
means of checking experimental error. These designs were based on the Snyder 
[2] solvent-selectivity triangle concept in which the combined specific 
selective effects of three different mobile phases are used to obtain the 
maximum resolution. Thus, unlike some of the ternary optimization methods 
described above [ l&19,25,27], this scheme allows in the reversed-phase mode 
selection of a four-component mobile phase, i.e. three different organic 
modifiers and water, which obviously enhances its potential for resolving com- 
plex mixtures. The optimization criterion for the original COF method was 
based on eqn. 4, although Ai was generally set to unity for all peaks and B to 
zero so that the time term of the equation was eliminated. A single polynomial 
regression of a pre-determined quadratic form was used to describe the 
variation of the computed COF value as a function of mobile phase composi- 
tion (i.e. solvents A, B, C versus COF). This procedure has, however, several 
distinct limitations, the most notable of which was that it only works if all 
peaks have the same relative retention order in all mobile phases, that is, if 
there is peak cross-over the COF value may not reflect this change. Further- 
more, as no peak number term was included, solutions with co-eluting peaks 
may give better COF values than those in which more peaks are detected [20]. 
Nevertheless, in cases in which no peak order change was observed, useful 
prediction of optimum conditions was obtained, validating the general concept 
of mixture design statistical methods for optimization. Direct correlation of 
COF with solvent composition results, however, in a relatively high level of 
imprecision when applied to more than five to six solutes [20]. Attempts to 
extend the COF method to accommodate the problems were deemed cumber- 
some, however, and an alternative approach, the overlapping resolution map 
(ORM) was developed. This is essentially a simultaneous multi-factorial applica- 
tion of the window diagram approach with the use of quadratic regressions. 

4.5.2. Overlapping resolution map (ORM) 

This procedure also utilises the seven-point solvent selectivity triangle-based 
simplex design as its source of experimental data, and like COF is based on 
mathematical mixture design models (simplex-lattice) originally proposed by 
Scheffe [34]. It relies on comparing the resolution of every pair of peaks ob- 
tained for each solvent mixture by calculating the resolution surface of the 
solvent triangle by fitting the data to a second-order polynomial regression 
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equation [ 20,351. A desired minimum resolution is chosen and the area of the 
triangle representing that separation for each pair delineated, the resultant over- 
lapping resolution map thus comprising the intersection of Venn diagrams for 
acceptable resolution for all compounds. It extends the window diagram tech- 
nique to the simultaneous analysis of ternary (four-component) mobile phases 
in the RP mode as distinct from binary solvent mixtures. In its original form 
[20] the ORM did not generate a unique optimum, but simply served to define 
an area corresponding to limits of mobile phase composition within which 
acceptable resolution of all peaks can be obtained, if this is possible, i.e. a 
window of accessibility. It handles peak cross-overs (provided that peaks are 
correctly identified in the experimental chromatograms) but assumes equiva- 
lence of priority for all peaks under consideration; minor peaks must be totally 
excluded if an improved separation of major components is required. 

Subsequent modifications to the ORM procedure [35] relate essentially to 
its operation in the normal-phase mode and subsequent implementation as a 
fully automated optimization protocol (SENTINEL, DuPont) and include the 
definition of a unique optimum, by an unspecified procedure. This presumably 
involves the assignment of a numerical COF-type value to the sum of predicted 
solute pair resolutions. There remains, however, no facility for assignment of 
differing peak priorities and there is no systematic optimization of analysis 
time, other than that inherent in the selection of an overall solvent strength 
on the basis of a preliminary binary gradient chromatogram (SCOUT in 
SENTINEL terminology). 

4.5.3. PEAKIN-SAS 
This stochastic predictive procedure developed by Issaq [36] is based on a 

similar approach to ORM with peak interval as the criterion of optimum resolu- 
tion and using a ten-point simplex lattice as the data base. If differs only in that 
it has been designed as a non-isoeluotropic system not requiring pre-selection of 
solvent strength and is limited in this form to mixtures of two organic 
modifiers and water, using a full cubic form of the regressions searched. 

4.5.4. Computer chromatogram simulation method (CCSM-I) 
It is clear that none of the above methods affords a complete solution to the 

problem of systematic optimization of the mobile phase. Each suffers from one 
or more defects, either in terms of assuming a specific and possibly inappropri- 
ate mathematical relationship between solute retentions and mobile phase 
composition, and/or lack of facilities to control optimization with respect to 
time of analysis or to the real analytical importance of individual peaks. 

Our approach to this problem was to develop a coherent predictive statistical 
method which can cope with any change in retention order, with any number 
of solutes, which incorporates a peak priority weighting factor, and which can 
optimize analysis time in an interactive manner, according to the requirements 
of the individual chromatographer. 

The CCSM is based on the use of the COC (eqn. 5) as the optimization 
criterion. It is a statistical mixture design method which also employed the 
seven-point simplex (Fig. 2) used by Glajch and co-workers [ 20,351 for ternary 
mobile phase optimization. It differs from the COF method (see 4.5.1. ) in that 
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the retention times for each component of the solute mixture are first trans- 
formed by the computer program into logarithmic retention indices (lnZ’~/lnTO) 
using one component of the mixture as an internal standard. Log retention 
indices give the best fit to a Gaussian distribution and reduce variance of data 
from replicate chromatograms obtained at different times. Furthermore, we 
cannot see any advantage in using peak interval (ATJ4) [20,35], a secondary 
variable which is geometrically increased in relation to peak number, as distinct 
from log retention indices, as the dependent variable. Calculation of the latter 
involves no loss of real chromatographic information and thus enables a com- 
plete simulation of a chromatogram to be assembled by the computer. The use 
of capacity factors does not improve the fit to a normal distribution and does 
not reduce variance due to time-related changes in, for example, column char- 
acteristics. Because calculation of capacity factors requires an additional step, 
it is not included in the CCSM procedure. 

The next step is calculation by a basic algorithm of the best polynomial 
multiple regression for each solute (solvents A, B, C, D versus lnTJlnTO). The 
a priori restriction of calculated polynomials to a pre-determined quadratic 
form by Glajch and co-workers [20,35] is not, in our view, justified. The 
complexity of solvent-solute-.--stationary phase interaction in HPLC may 
require even more complex mathematical models [37,38] for enhanced preci- 
sion. In principle any continuous response surface can be represented by a 
polynomial, if enough terms are included. In our experience, treatment of 
water simply as a diluent of the organic modifiers is not valid with respect to 
a number of solutes. We have opted for selection from all possible incomplete 
6th degree equations, with the best for each retention index selected by evalua- 
tion of correlation coefficients (rij). Analysis of data from experiments with 
mixtures of ten corticosteroid hormones [ 391 resulted in a significant improve- 
ment in precision, compared with other quadratic regressions calculated 
according to the COF method [39]. Provided that uncontrolled changes in 
column performance do not supervene, this must result in an increase in the 
likelihood that the predicted optimum will yield an improved separation in 
practice. 

After insertion of desired separation parameters (Ai, Rsi jd, TV) by the 
chromatographer our program continues by simulating a l’arge number of 
individual chromatograms at a pre-selected solvent composition interval until 
the entire mobile phase envelope defined as in Fig. 1 has been explored. COC 
values are thus calculated for chromatographic retentions predicted for all 
possible three- and four-component mobile phases, and the global optimum, 
together with any alternative local minima identified and displayed as well as 
the predicted retention times for these compositions (see Fig. 7). If the pre- 
dicted separation is clearly inappropriate (for example because the most 
important solute is minimally resolved), then the simulations can be repeated 
with a new set of priority weightings, which will be reflected in the calculated 
COC values. In our experience not more than two or three such iterations are 
required to generate a satisfactory solution, and with prior experience of the 
chromatographic behaviour of the compounds in question, it is often possible 
to achieve a satisfactory optimum in a single run of the program, lasting 
approximately 2-3 h for mixtures of about fifteen compounds. If a good 
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separation is predicted, then attempts can be made to reduce analysis time by 
further simulations with a reduced value for T,. The effective use of this 
method in optimizing the separation of a natural mixture of ten polar steroid 
hormones has recently been described [ 391. 

Fig. 4 shows in a graphical form the solutions that the program found which 
yielded better separations than the best of the experimental chromatograms 
that provided the database. As can be seen, two local optima were discovered, 
one involving a four-component and another a three-component mobile phase, 
the latter giving the lower COC values and thus better overall separations. The 
actual chromatograms with this mobile phase and the predicted retentions are 
illustrated in Fig. 5. The error index calculated as the mean difference between 
all predicted and observed retentions was 6%. 

We have also used this program in an attempt to optimize the reversed-phase 
separation of a group of naturally occurring catechol oestrogens, their metab- 
olites and their precursors. The selectivity patterns obtained with four different 
binary mobile phases are illustrated in Fig. 6, and the experimental data for the 
seven chromatograms using acetonitrile, methanol and tetrahydrofuran as the 
organic modifiers (after Snyder [ 21) are shown in Fig. 7, together with their 
computed COC values. With this mixture of solutes and solvents the program 
in fact identified a binary mixture (acetonitrile-water) as the optimum. As 
shown in Fig. 6, this failed to resolve only two compounds (Nos. 2 and 3) 
which were, however, resolved with tetrahydrofuran-water. When we weighted 
the priority values for 2 and 3, we could not, however, identify a solution in 

MEOH 

Fig. 4. Solutions afforded by CCSM-I for mixture of polar corticosteroids using a seven-point 
simplex. The points indicated and their size show the COC values for all mobile phases giving 
better predicted separations than the best of the experimental chromatograms (indicated by 
arrow). The best predicted solution corresponded to a three-component mobile phase com- 
prising methanol-tetrahydrofuran-water (22 : 4 : 74) although note the four-component 
local minimum also found. The data for this optimization and the identities of the steroids 
are given in ref. 39. 



17 
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Fig. 5. Predicted and actual separations given by the mobile phase optimized in Fig. 4. The 
UV trace shows the actual separation with compounds (designated by upper case letters), the 
arrows with corresponding lower case letters show the retention times predicted by the 
program for each component of the mixture, with a mean error of 6%. 

which complete resolution of all peaks was predicted when using the seven- 
point procedure with empirically chosen pre-defined overall solvent strenghts. 

In the above form, the CCSM method still has important limitations; 
notably, there is an arbitrary selection of overall solvent strength for the iso- 
eluotropic optimization. Furthermore, because of non-additive solvent strength 
effects obtained with mixed organic modifiers [12] predicted absolute reten- 
tions may deviate significantly from those observed, if regressions are calcu- 
lated on the basis of a seven-point design (Fig. 2), although relative retentions 
will be accurately predicted and in general the effective optimum will be 
found. Nevertheless, to encompass organic modifier-water interactions and 
their effects on absolute retention, we have extended the procedure, basing it 
on the same algorithm, but permitting a true optimization of a quaternary 
mobile phase with solvent strength as an independent variable (four compo- 
nents, three variables). In this modification a total of twelve pre-determined 
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cot= l.B -24.1 -se -11.2 -25.3 33.0 -*3.1 

Fig. 7. Data from seven-point simplex for optimization of the isocratic separations of a mix- 
ture of oestrogens and catechol oestrogens and their metabolites shown in Fig. 6, together 
with corresponding COC values for each of the seven experimental chromatograms; with 
equal priority weightings and a desired analysis time of 25 min. 

chromatograms (illustrated in Fig. 8) are required for RP-HPLC, in which 
solvent strengths bracketing the likely optimum are employed and very water- 
rich and water-poor mobile phases are excluded. Our program has, therefore, 
now been extended to this form of database. Introducing the water-solvent 
product as an independent variable in the regression calculations can result in 
up to a five-fold increase in the precision with which absolute retentions are 
predicted by CCSM. 

The modified CCSM procedure can also be applied to normal-phase optimi- 
zation in adsorption liquid chromatography (LC), in which it is possible that 
even greater specific selective effects may occur as a consequence of the more 
widely differing relevant properties of solvents used in this mode, i.e. non- 
localising, localising dipole and localising base solvents, compared with the 
mixtures of proton acceptor, proton donator and dipole solvents appropriate 
for bonded-phase LC [40]. As Glajch and Kirkland [41] have recently re- 
emphasized, the possibility of using quaternary solvent mixtures is a pre- 
requisite for utilizing the total range of potential selectivity effects in LC. 
For normal-phase isoeluotropic optimization with a mixture of four solvents 
a total of fifteen pre-determined chromatograms provides the data base in 
CCSM, corresponding to the full tetrahedral simplex lattice (Fig. 3). 

The CCSM-I program has, up to the present, been effected on an &bit Apple 
IIe computer, the program itself occupying about 12K of RAM in BASIC and 
computations of optimized mobile phases taking anything up to 4-6 h each 
using a non-compiled version. Significant improvements have, however, ob- 
tained with use of machine code routines and other time-saving manoeuvers. 
These have enabled different solutions involving different priority weightings, 
etc. to be generated more rapidly (50-80 min) for comparison. 
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Fig. 8. Twelve-point design for systematic optimization of solvent strength in isocratic 
RP-HPLC without preselection of solvent strength, where A, B and C are three different 
organic modifiers, and the overall maximum and minimum solvent strengths are defined by 
the overall polarity of the solute mixture. This database can also be used for the optimiza- 
tion of a continuous two-pump gradient profile to separate the same solutes. 

4.6. Optimization of gradient elution 

The simplest form of automated gradient elution optimization has already 
been mentioned, viz. GRADOPT, OPEX and OPTIM [9] in which solvent 
strength and gradient duration are optimized without reference to solvent 
selectivity, which must be separately optimized beforehand in the isocratic 
mode. Simultaneous multi-factorial optimization by sequential simplex tech- 
niques and by window diagram methods is subject to various practical draw- 
backs, which have already been discussed. In principle, therefore, stochastic 
predictive methods based on an appropriate simplex lattice, combined with 
appropriate equations for describing solute relative retentions offer the most 
economical route to simultaneous optimization of gradient profiles and multi- 
solvent selectivities. 

The most comprehensive approach to this goal of selective multi-solvent 
gradient elution (SMGE) optimization thus far has been that of Kirkland and 
Glajch [21,41]. Thus, although numerous studies of ternary gradient elution 
in practice have been carried out, notably by Jandera et al. [42], their theoreti- 
cal treatment has been confined to linear gradients and has neglected mutual 
interactions between the two organic modifiers and water. The theoretical 
prediction of optimal ternary gradients from binary gradient data that they 
propose has not, as yet, been generally verified experimentally. Their system 
is, furthermore, implicitly confined to three-component mobile phases, thus 
limiting the range of potential specific selective effects that can be deployed. 
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Kirkland and Glajch [Zl], by contrast, have approached the problem from 
the standpoint of the solvent selectivity triangle with its four components. 
The first extension of the system was to develop a design for iso-selective 
multi-solvent gradient elution (IMGE) in which solvent strength but not separa- 
tion selectivity (i.e. organic modifier ratios) is altered during the run [21] . To 
generate the requisite data for statistical optimization a series of seven iso-selec- 
tive linear gradients are run, extending the selectivity triangle to a prism [41]. 
These data are used to calculate the coefficients of the quadratic equations that 
describe resolution contour plots for all peak pairs, exactly as in the ORM 
method of isoeluotropic optimization [ 351, except that peak pair resolution is 
defined in terms of absolute retention times, rather than on the basis of peak 
separations. This enables retention times for all peaks to be estimated through 
the complete solvent selectivity prism, and thus the global optimum with 
respect to linear iso-selective four-component gradients to be calculated, with 
a reported precision of l--2% [41]. 

Thus far, however, the fully selective SMGE concept has not been realised 
as a systematic procedure. As an interim approach Glajch and Kirkland [41] 
have adopted a semi-empirical procedure in which different iso-selective 
gradients are selected for groups of compounds of similar polarity by inspec- 
tion of iso-selective gradient runs obtained for IMGE, and these are then 
linked, empirically, in a discontinuous step-selective gradient with a linear 
solvent strength increase. A practical disadvantage of this method is that it can 
result in large fluctuations in detector baseline when abrupt changes of solvent 
composition are effected, and does not take into full account the effects of 
initial conditions on relative retentions of later eluting solutes. To overcome 
this problem and to attain the maximum flexibility it is necessary to incorpo- 
rate continuous selectivity changes (preferably non-linear) in conjunction with 
non-linear changes in solvent strength. Kirkland and co-workers have not, as 
yet, provided details of how this is to be achieved. 

It is clear, nevertheless, that when dealing with mixtures which contain 
several groups of solutes with similar selectivity factors and in which the overall 
polarity range is wide that a solution to systematic optimization must be 
sought in non-isoeluotropic designs. A program (CCSM-Gradient) has now been 
developed which uses the same twelve-point database illustrated in Fig. 8 to 
select the most appropriate binary (two-pump) gradient. The rationale of 
CCSM-Gradient is that a gradient can be divided into a series of instantaneous 
isocratic conditions for which the positions of each compound within the 
column can be calculated provided that certain physical characteristics of the 
system such as dead volume and column void volume are known. In this 
manner it is possible for the computer to systematically simulate the effect of 
various gradient profiles on elution volumes using data from a pre-defined 
limited number of isoeluotropic experiments. The result is an optimization 
with respect to a continuous gradient profile as distinct from a linked series 
of isoeluotropic conditions. 
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6. SUMMARY 

Systems for computer- and microprocessor-aided optimization of the mobile 
phase in high-performance liquid chromatography (HPLC) are reviewed and 
compared with the computer chromatogram simulation method (CCSM). 
CCSM was developed and tested in our laboratories for the off-line interactive 
optimization of four-component isoeluotropic mobile phases for HPLC. It is 
based on a statistical mixture design method which requires a limited pre- 
defined number of experimental chromatograms and it predicts solute 
retention times for systematically simulated chromatograms, selecting the best 
according to user-defined separation priorities. The application of similar 
procedures to gradient elution are discussed. 
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